Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Biochem Biophys Res Commun ; 695: 149481, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211534

RESUMO

Spinocerebellar ataxia type 6 (SCA6) is a polyglutamine (polyQ) disease, which is caused by the elongation of CAG repeats encoding polyQ in the CACNA1A gene. The CACNA1A gene encodes two proteins, namely, α1A (a subunit of the plasma membrane calcium channel), which is translated in its entire length, and α1ACT, which is translated from the second cistron, and both proteins have a polyQ tract. The α1A-polyQ and α1ACT-polyQ proteins with an elongated polyQ stretch have been reported to form aggregates in cells and induce neuronal cell death, but the subcellular localization of these proteins and their cytotoxic properties remain unclear. In this study, we first analyzed SCA6 model mice and found that α1A-polyQlong localized mainly to the Golgi apparatus, whereas a portion of α1ACT-polyQlong localized to the nucleus. Analysis using Neuro2a cells also showed similar subcellular localizations of these proteins, and a proportion of both proteins localized to the endoplasmic reticulum (ER). Cytotoxic studies demonstrated that both proteins induce both the ER stress response and apoptosis, indicating that they are able to induce ER stress-induced apoptosis.


Assuntos
Canais de Cálcio Tipo N , Ataxias Espinocerebelares , Animais , Camundongos , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Retículo Endoplasmático/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
2.
Neurology ; 101(24): 1081-1082, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857491

RESUMO

Multiple system atrophy (MSA) is a multisystem neurodegenerative disorder affecting adults older than 30 years and presenting with a constellation of symptoms, including parkinsonian features, ataxia, and autonomic disturbances. The pathophysiology of MSA has gradually been unveiled. It is characterized by α-synuclein protein aggregates in neurons and glial cells that are different from those seen in Parkinson disease (PD).1 MSA is the most common condition, after PD, that has parkinsonism as a cardinal feature, and it is also one of the most common causes of sporadic cerebellar ataxias. Because the clinical presentation is heterogeneous, we as clinicians must always be certain of the probability of an MSA diagnosis for each patient we are facing.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Adulto , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Ataxia , Atrofia
3.
Sci Rep ; 13(1): 15805, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737224

RESUMO

Patients with cerebellar stroke display relatively mild ataxic gaits. These motor deficits often improve dramatically; however, the neural mechanisms of this improvement have yet to be elucidated. Previous studies in mouse models of gait ataxia, such as ho15J mice and cbln1-null mice, have shown that they have a dysfunction of parallel fiber-Purkinje cell synapses in the cerebellum. However, the effects of cerebellar stroke on the locomotor kinematics of wild-type mice are currently unknown. Here, we performed a kinematic analysis of gait ataxia caused by a photothrombotic stroke in the medial, vermal, and intermediate regions of the cerebellum of wild-type mice. We used the data and observations from this analysis to develop a model that will allow locomotive prognosis and indicate potential treatment regimens following a cerebellar stroke. Our analysis showed that mice performed poorly in a ladder rung test after a stroke. During walking on a treadmill, the mice with induced cerebellar stroke had an increased duty ratio of the hindlimb caused by shortened duration of the swing phase. Overall, our findings suggest that photothrombotic cerebellar infarction and kinematic gait analyses will provide a useful model for quantification of different types of acute management of cerebellar stroke in rodents.


Assuntos
Marcha Atáxica , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Acidente Vascular Cerebral/etiologia , Marcha , Caminhada , Camundongos Knockout
4.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425910

RESUMO

To elucidate the molecular basis of multiple system atrophy (MSA), a neurodegenerative disease, we conducted a genome-wide association study (GWAS) in a Japanese MSA case/control series followed by replication studies in Japanese, Korean, Chinese, European and North American samples. In the GWAS stage rs2303744 on chromosome 19 showed a suggestive association ( P = 6.5 × 10 -7 ) that was replicated in additional Japanese samples ( P = 2.9 × 10 -6 . OR = 1.58; 95% confidence interval, 1.30 to 1.91), and then confirmed as highly significant in a meta-analysis of East Asian population data ( P = 5.0 × 10 -15 . Odds ratio= 1.49; 95% CI 1.35 to 1.72). The association of rs2303744 with MSA remained significant in combined European/North American samples ( P =0.023. Odds ratio=1.14; 95% CI 1.02 to 1.28) despite allele frequencies being quite different between these populations. rs2303744 leads to an amino acid substitution in PLA2G4C that encodes the cPLA2γ lysophospholipase/transacylase. The cPLA2γ-Ile143 isoform encoded by the MSA risk allele has significantly decreased transacylase activity compared with the alternate cPLA2γ-Val143 isoform that may perturb membrane phospholipids and α-synuclein biology.

5.
Elife ; 122023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37461319

RESUMO

Abnormal expansions of GGGGCC repeat sequence in the noncoding region of the C9orf72 gene is the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). The expanded repeat sequence is translated into dipeptide repeat proteins (DPRs) by noncanonical repeat-associated non-AUG (RAN) translation. Since DPRs play central roles in the pathogenesis of C9-ALS/FTD, we here investigate the regulatory mechanisms of RAN translation, focusing on the effects of RNA-binding proteins (RBPs) targeting GGGGCC repeat RNAs. Using C9-ALS/FTD model flies, we demonstrated that the ALS/FTD-linked RBP FUS suppresses RAN translation and neurodegeneration in an RNA-binding activity-dependent manner. Moreover, we found that FUS directly binds to and modulates the G-quadruplex structure of GGGGCC repeat RNA as an RNA chaperone, resulting in the suppression of RAN translation in vitro. These results reveal a previously unrecognized regulatory mechanism of RAN translation by G-quadruplex-targeting RBPs, providing therapeutic insights for C9-ALS/FTD and other repeat expansion diseases.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/patologia , RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Drosophila/genética
6.
Genome Res ; 33(3): 435-447, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307504

RESUMO

Tandem repeats (TRs) are one of the largest sources of polymorphism, and their length is associated with gene regulation. Although previous studies reported several tandem repeats regulating gene splicing in cis (spl-TRs), no large-scale study has been conducted. In this study, we established a genome-wide catalog of 9537 spl-TRs with a total of 58,290 significant TR-splicing associations across 49 tissues (false discovery rate 5%) by using Genotype-Tissue expression (GTex) Project data. Regression models explaining splicing variation by using spl-TRs and other flanking variants suggest that at least some of the spl-TRs directly modulate splicing. In our catalog, two spl-TRs are known loci for repeat expansion diseases, spinocerebellar ataxia 6 (SCA6) and 12 (SCA12). Splicing alterations by these spl-TRs were compatible with those observed in SCA6 and SCA12. Thus, our comprehensive spl-TR catalog may help elucidate the pathomechanism of genetic diseases.


Assuntos
Engenharia Genética , Splicing de RNA , Humanos , Polimorfismo Genético , Sequências de Repetição em Tandem
7.
EClinicalMedicine ; 59: 101920, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37256098

RESUMO

Background: Functionally impaired variants of COQ2, encoding an enzyme in biosynthesis of coenzyme Q10 (CoQ10), were found in familial multiple system atrophy (MSA) and V393A in COQ2 is associated with sporadic MSA. Furthermore, reduced levels of CoQ10 have been demonstrated in MSA patients. Methods: This study was a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. Patients with MSA were randomly assigned (1:1) to either ubiquinol (1500 mg/day) or placebo. The primary efficacy outcome was the change in the unified multiple system atrophy rating scale (UMSARS) part 2 at 48 weeks. Efficacy was assessed in all patients who completed at least one efficacy assessment (full analysis set). Safety analyses included patients who completed at least one dose of investigational drug. This trial is registered with UMIN-CTR (UMIN000031771), where the drug name of MSA-01 was used to designate ubiquinol. Findings: Between June 26, 2018, and May 27, 2019, 139 patients were enrolled and randomly assigned to the ubiquinol group (n = 69) or the placebo group (n = 70). A total of 131 patients were included in the full analysis set (63 in the ubiquinol group; 68 in the placebo group). This study met the primary efficacy outcome (least square mean difference in UMSARS part 2 score (-1.7 [95% CI, -3.2 to -0.2]; P = 0.023)). The ubiquinol group also showed better secondary efficacy outcomes (Barthel index, Scale for the Assessment and Rating of Ataxia, and time required to walk 10 m). Rates of adverse events potentially related to the investigational drug were comparable between ubiquinol (n = 15 [23.8%]) and placebo (n = 21 [30.9%]). Interpretation: High-dose ubiquinol was well-tolerated and led to a significantly smaller decline of UMSARS part 2 score compared with placebo. Funding: Japan Agency for Medical Research and Development.

8.
Cerebellum ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115382

RESUMO

Ataxia and impaired motor learning are both fundamental features in diseases affecting the cerebellum. However, it remains unclarified whether motor learning is impaired only when ataxia clearly manifests, nor it is known whether the progression of ataxia, the speed of which often varies among patients with the same disease, can be monitored by examining motor learning. We evaluated motor learning and ataxia at intervals of several months in 40 patients with degenerative conditions [i.e., multiple system atrophy (MSA), Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), SCA6, and SCA31]. Motor learning was quantified as the adaptability index (AI) in the prism adaptation task and ataxia was scored using the Scale for the Assessment and Rating of Ataxia (SARA). We found that AI decreased most markedly in both MSA-C and MSA-P, moderately in MJD, and mildly in SCA6 and SCA31. Overall, the AI decrease occurred more rapidly than the SARA score increase. Interestingly, AIs remained normal in purely parkinsonian MSA-P patients (n = 4), but they dropped into the ataxia range when these patients started to show ataxia. The decrease in AI during follow-up (dAI/dt) was significant in patients with SARA scores < 10.5 compared with patients with SARA scores ≥ 10.5, indicating that AI is particularly useful for diagnosing the earlier phase of cerebellar degeneration. We conclude that AI is a useful marker for progressions of cerebellar diseases, and that evaluating the motor learning of patients can be particularly valuable for detecting cerebellar impairment, which is often masked by parkinsonisms and other signs.

9.
Brain Behav Immun ; 111: 32-45, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37004758

RESUMO

The molecular pathological mechanisms underlying schizophrenia remain unclear; however, genomic analysis has identified genes encoding important risk molecules. One such molecule is neurexin 1α (NRXN1α), a presynaptic cell adhesion molecule. In addition, novel autoantibodies that target the nervous system have been found in patients with encephalitis and neurological disorders. Some of these autoantibodies inhibit synaptic antigen molecules. Studies have examined the association between schizophrenia and autoimmunity; however, the pathological data remain unclear. Here, we identified a novel autoantibody against NRXN1α in patients with schizophrenia (n = 2.1%) in a Japanese cohort (n = 387). None of the healthy control participants (n = 362) were positive for anti-NRXN1α autoantibodies. Anti-NRXN1α autoantibodies isolated from patients with schizophrenia inhibited the molecular interaction between NRXN1α and Neuroligin 1 (NLGN1) and between NRXN1α and Neuroligin 2 (NLGN2). Additionally, these autoantibodies reduced the frequency of the miniature excitatory postsynaptic current in the frontal cortex of mice. Administration of anti-NRXN1α autoantibodies from patients with schizophrenia into the cerebrospinal fluid of mice reduced the number of spines/synapses in the frontal cortex and induced schizophrenia-related behaviors such as reduced cognition, impaired pre-pulse inhibition, and reduced social novelty preference. These changes were improved through the removal of anti-NRXN1α autoantibodies from the IgG fraction of patients with schizophrenia. These findings demonstrate that anti-NRXN1α autoantibodies transferred from patients with schizophrenia cause schizophrenia-related pathology in mice. Removal of anti-NRXN1α autoantibodies may be a therapeutic target for a subgroup of patients who are positive for these autoantibodies.


Assuntos
Esquizofrenia , Camundongos , Animais , Esquizofrenia/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Autoanticorpos/metabolismo , Fenótipo
10.
Cerebellum ; 22(1): 70-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35084690

RESUMO

Spinocerebellar ataxia type 31 (SCA31), an autosomal-dominant neurodegenerative disorder characterized by progressive cerebellar ataxia with Purkinje cell degeneration, is caused by a heterozygous 2.5-3.8 kilobase penta-nucleotide repeat of (TTCCA)n in intron 11 of the thymidine kinase 2 (TK2) gene. TK2 is an essential mitochondrial pyrimidine-deoxyribonucleoside kinase. Bi-allelic loss-of-function mutations of TK2 lead to mitochondrial DNA depletion syndrome (MDS) in humans through severe (~ 70%) reduction of mitochondrial electron-transport-chain activity, and tk2 knockout mice show Purkinje cell degeneration and ataxia through severe mitochondrial cytochrome-c oxidase subunit I (COX I) protein reduction. To clarify whether TK2 function is altered in SCA31, we investigated TK2 and COX I expression in human postmortem SCA31 cerebellum. We confirmed that canonical TK2 mRNA is transcribed from exons far upstream of the repeat site, and demonstrated that an extended version of TK2 mRNA ("TK2-EXT"), transcribed from exons spanning the repeat site, is expressed in human cerebellum. While canonical TK2 was conserved among vertebrates, TK2-EXT was specific to primates. Reverse transcription-PCR demonstrated that both TK2 mRNAs were preserved in SCA31 cerebella compared with control cerebella. The TK2 proteins, assessed with three different antibodies including our original polyclonal antibody against TK2-EXT, were detected as ~ 26 kilodalton proteins on western blot; their levels were similar in SCA31 and control cerebella. COX I protein level was preserved in SCA31 compared to nuclear DNA-encoded protein. We conclude that the expression and function of TK2 are preserved in SCA31, suggesting a mechanism distinct from that of MDS.


Assuntos
Rubiaceae , Ataxias Espinocerebelares , Animais , Camundongos , Humanos , Proteínas Mitocondriais , Ataxias Espinocerebelares/genética , Células de Purkinje , Nucleotídeos , RNA Mensageiro , Rubiaceae/genética
11.
J Hum Genet ; 68(3): 153-156, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36319738

RESUMO

Spinocerebellar ataxia type 31 (SCA31) is one of the most common forms of autosomal-dominant cerebellar ataxia in Japan. SCA31 has a strong founder effect, which is consistent with the fact that this disease is basically absent in other ethnicities. After searching the entire founder region of a 2-megabase (Mb), we finally identified a 2.5 to 3.8 kb-long complex penta-nucleotide repeat containing (TGGAA)n, (TAGAA)n, (TAAAA)n and (TAAAATAGAA)n as the only genetic change segregating SCA31 individuals from normal people. Furthermore, (TGGAA)n was isolated as the only repeat explaining the pathogenesis because other repeats were encountered in control Japanese. From the genomic point of view, the complex penta-nucleotide repeat lies in an intronic segment shared by two genes, BEAN1 (brain expressed, associated with Nedd4) and TK2 (thymidine kinase 2) transcribed in mutually opposite directions. While TK2 is ubiquitously expressed, BEAN1 is transcribed only in the brain. Thus, the complex repeat is bi-directionally transcribed exclusively in the brain, as two independent non-coding repeats. Furthermore, the complex repeat containing (UGGAA)n was found to form abnormal RNA structures, called RNA foci, in cerebellar Purkinje cell nuclei of SCA31 patients' brains. Subsequent investigation by over-expressing (UGGAA)n in Drosophila revealed that the RNA containing (UGGAA)n exerts toxicity in a length- and expression level-dependent manner, whereas its toxicity could be dampened by (UGGAA)n-binding proteins, TDP-43, FUS and hnRNP A2/B1. It seems rational to formulate a treatment strategy through enhancing the role of RNA-binding proteins against (UGGAA)n-toxicity in SCA31.


Assuntos
Ataxias Espinocerebelares , Humanos , Íntrons , Ataxias Espinocerebelares/genética , RNA/genética , Nucleotídeos
12.
J Neurol Sci ; 444: 120527, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563608

RESUMO

Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant disease, classified amongst pure cerebellar ataxias (ADCA type 3). While SCA31 is the third most prevalent autosomal dominant ataxia in Japan, it is extremely rare in other countries. A literature review was conducted on PubMed, where we included all case reports and studies describing the clinical presentation of original SCA31 cases. The clinical and radiological features of 374 patients issued from 25 studies were collected. This review revealed that the average age of onset was 59.1 ± 3.3 years, with symptoms of slowly progressing ataxia and dysarthria. Other common clinical features were oculomotor dysfunction (38.8%), dysphagia (22.1%), hypoacousia (23.3%), vibratory hypoesthesia (24.3%), and dysreflexia (41.6%). Unfrequently, abnormal movements (7.4%), extrapyramidal symptoms (4.5%) and cognitive impairment (6.9%) may be observed. Upon radiological examination, clinicians can expect a high prevalence of cerebellar atrophy (78.7%), occasionally accompanied by brainstem (9.1%) and cortical (9.1%) atrophy. Although SCA31 is described as a slowly progressive pure cerebellar syndrome characterized by cerebellar signs such as ataxia, dysarthria and oculomotor dysfunction, this study evaluated a high prevalence of extracerebellar manifestations. Extracerebellar signs were observed in 52.5% of patients, primarily consisting of dysreflexia, vibratory hypoesthesia and hypoacousia. Nonetheless, we must consider the old age and longstanding disease course of patients as a confounding factor for extracerebellar sign development, as some may not be directly attributable to SCA31. Clinicians should consider SCA31 in patients with a hereditary, pure cerebellar syndrome and in patients with extracerebellar signs.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Pessoa de Meia-Idade , Disartria/complicações , Hipestesia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Ataxia Cerebelar/complicações , Atrofia/complicações
13.
Cells ; 13(1)2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201273

RESUMO

Recent advancements in genome analysis technology have revealed the presence of read-through transcripts in which transcription continues by skipping the polyA signal. We here identified and characterized a new read-through transcript, TOMM40-APOE. With cDNA amplification from THP-1 cells, the TOMM40-APOE3 product was successfully generated. We also generated TOMM40-APOE4, another isoform, by introducing point mutations. Notably, while APOE3 and APOE4 exhibited extracellular secretion, both TOMM40-APOE3 and TOMM40-APOE4 were localized exclusively to the mitochondria. But functionally, they did not affect mitochondrial membrane potential. Cell death induction studies illustrated increased cell death with TOMM40-APOE3 and TOMM40-APOE4, and we did not find any difference in cellular function between the two isoforms. These findings indicated that the new mitochondrial protein TOMM40-APOE has cell toxic ability.


Assuntos
Apolipoproteína E4 , Apolipoproteínas E , Apolipoproteína E3 , Morte Celular , DNA Complementar
14.
Artigo em Inglês | MEDLINE | ID: mdl-36070310

RESUMO

BACKGROUND AND OBJECTIVES: Paraneoplastic cerebellar degeneration (PCD) is characterized by a widespread loss of Purkinje cells (PCs) and may be associated with autoantibodies against intracellular antigens such as Yo or cell surface neuronal antigens such as the P/Q-type voltage-gated calcium channel (P/Q-VGCC). Although the intracellular location of the target antigen in anti-Yo-PCD supports a T cell-mediated pathology, the immune mechanisms in anti-P/Q-VGCC-PCD remain unclear. In this study, we compare neuropathologic characteristics of PCD with anti-P/Q-VGCC and anti-Yo autoantibodies in an archival autopsy cohort. METHODS: We performed neuropathology, immunohistochemistry, and multiplex immunofluorescence on formalin-fixed and paraffin-embedded brain tissue of 1 anti-P/Q-VGCC, 2 anti-Yo-PCD autopsy cases and controls. RESULTS: Anti-Yo-PCD revealed a diffuse and widespread PC loss together with microglial nodules with pSTAT1+ and CD8+granzymeB+ T cells and neuronal upregulation of major histocompatibility complex (MHC) Class I molecules. Some neurons showed a cytoplasmic immunoglobulin G (IgG) staining. In contrast, PC loss in anti-P/Q-VGCC-PCD was focal and predominantly affected the upper vermis, whereas caudal regions and lateral hemispheres were spared. Inflammation was characterized by scattered CD8+ T cells, single CD20+/CD79a+ B/plasma cells, and an IgG staining of the neuropil in the molecular layer of the cerebellar cortex and neuronal cytoplasms. No complement deposition or MHC-I upregulation was detected. Moreover, synaptophysin was reduced, and neuronal P/Q-VGCC was downregulated. In affected areas, axonal spheroids and the accumulation of amyloid precursor protein and glucose-regulated protein 78 in PCs indicate endoplasmatic reticulum stress and impairment of axonal transport. In both PCD types, calbindin expression was reduced or lost in the remaining PCs. DISCUSSION: Anti-Yo-PCD showed characteristic features of a T cell-mediated pathology, whereas this was not observed in 1 case of anti-P/Q-VGCC-PCD. Our findings support a pathogenic role of anti-P/Q-VGCC autoantibodies in causing neuronal dysfunction, probably due to altered synaptic transmission resulting in calcium dysregulation and subsequent PC death. Because disease progression may lead to irreversible PC loss, anti-P/Q-VGCC-PCD patients could benefit from early oncologic and immunologic therapies.


Assuntos
Degeneração Paraneoplásica Cerebelar , Anticorpos Antineoplásicos , Autoanticorpos , Linfócitos T CD8-Positivos , Canais de Cálcio Tipo Q , Humanos , Imunoglobulina G , Proteínas do Tecido Nervoso
15.
Intern Med ; 61(18): 2793-2796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36104177

RESUMO

We herein report a 61-year-old woman who was genetically diagnosed with spinocerebellar ataxia type 31 whose symptoms were modified by anti-amino terminal of alpha-enolase (NAE) antibodies, known as a biomarker of Hashimoto's encephalopathy (HE), and ultimately responded to immunotherapy. The relative titers of anti-NAE antibodies increased when her cerebellar ataxia showed acute deterioration and decreased after immunotherapy. This is the first report of cerebellar ataxia associated with genetic spinocerebellar ataxia with concomitant cerebellar type HE. Physicians should be mindful of measuring anti-NAE antibodies to prevent overlooking patients with genetic spinocerebellar ataxia with treatable simultaneous ataxic diseases.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Autoanticorpos , Ataxia Cerebelar/diagnóstico , Encefalite , Feminino , Doença de Hashimoto , Humanos , Pessoa de Meia-Idade , Fosfopiruvato Hidratase
16.
Cell Rep Med ; 3(4): 100597, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35492247

RESUMO

From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia.


Assuntos
Moléculas de Adesão de Célula Nervosa , Esquizofrenia , Autoanticorpos , Antígeno CD56/genética , Humanos , Moléculas de Adesão de Célula Nervosa/genética , Esquizofrenia/genética , Sinapses/metabolismo
17.
Acta Neuropathol Commun ; 9(1): 172, 2021 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689836

RESUMO

Spinocerebellar ataxia type 34 (SCA34) is an autosomal dominant inherited ataxia due to mutations in ELOVL4, which encodes one of the very long-chain fatty acid elongases. SCA38, another spinocerebellar ataxia, is caused by mutations in ELOVL5, a gene encoding another elongase. However, there have been no previous studies describing the neuropathology of either SCA34 or 38. This report describes the neuropathological findings of an 83-year-old man with SCA34 carrying a pathological ELOVL4 mutation (NM_022726, c.736T>G, p.W246G). Macroscopic findings include atrophies in the pontine base, cerebellum, and cerebral cortices. Microscopically, marked neuronal and pontocerebellar fiber loss was observed in the pontine base. In addition, in the pontine base, accumulation of CD68-positive macrophages laden with periodic acid-Schiff (PAS)-positive material was observed. Many vacuolar lesions were found in the white matter of the cerebral hemispheres and, to a lesser extent, in the brainstem and spinal cord white matter. Immunohistological examination and ultrastructural observations with an electron microscope suggest that these vacuolar lesions are remnants of degenerated oligodendrocytes. Electron microscopy also revealed myelin sheath destruction. Unexpectedly, aggregation of the four-repeat tau was observed in a spatial pattern reminiscent of progressive supranuclear palsy. The tau lesions included glial fibrillary tangles resembling tuft-shaped astrocytes and neurofibrillary tangles and pretangles. This is the first report to illustrate that a heterozygous missense mutation in ELOVL4 leads to neuronal loss accompanied by macrophages laden with PAS-positive material in the pontine base and oligodendroglial degeneration leading to widespread vacuoles in the white matter in SCA34.


Assuntos
Encéfalo/patologia , Degeneração Neural/patologia , Oligodendroglia/patologia , Ataxias Espinocerebelares/patologia , Substância Branca/patologia , Idoso de 80 Anos ou mais , Proteínas do Olho/genética , Humanos , Masculino , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Degeneração Neural/genética , Ataxias Espinocerebelares/genética , Vacúolos/patologia
18.
Front Neurosci ; 15: 648133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113230

RESUMO

Spinocerebellar ataxia type 31 (SCA31) is a progressive neurodegenerative disease characterized by degeneration of Purkinje cells in the cerebellum. Its genetic cause is a 2.5- to 3.8-kb-long complex pentanucleotide repeat insertion containing (TGGAA)n, (TAGAA)n, (TAAAA)n, and (TAAAATAGAA)n located in an intron shared by two different genes: brain expressed associated with NEDD4-1 (BEAN1) and thymidine kinase 2 (TK2). Among these repeat sequences, (TGGAA)n repeat was the only sequence segregating with SCA31, which strongly suggests its pathogenicity. In SCA31 patient brains, the mutant BEAN1 transcript containing expanded UGGAA repeats (UGGAAexp) was found to form abnormal RNA structures called RNA foci in cerebellar Purkinje cell nuclei. In addition, the deposition of pentapeptide repeat (PPR) proteins, poly(Trp-Asn-Gly-Met-Glu), translated from UGGAAexp RNA, was detected in the cytoplasm of Purkinje cells. To uncover the pathogenesis of UGGAAexp in SCA31, we generated Drosophila models of SCA31 expressing UGGAAexp RNA. The toxicity of UGGAAexp depended on its length and expression level, which was accompanied by the accumulation of RNA foci and translation of repeat-associated PPR proteins in Drosophila, consistent with the observation in SCA31 patient brains. We also revealed that TDP-43, FUS, and hnRNPA2B1, motor neuron disease-linked RNA-binding proteins bound to UGGAAexp RNA, act as RNA chaperones to regulate the formation of RNA foci and repeat-associated translation. Further research on the role of RNA-binding proteins as RNA chaperones may also provide a novel therapeutic strategy for other microsatellite repeat expansion diseases besides SCA31.

19.
Nat Commun ; 12(1): 236, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431896

RESUMO

Synthetic small molecules modulating RNA structure and function have therapeutic potential for RNA diseases. Here we report our discovery that naphthyridine carbamate dimer (NCD) targets disease-causing r(UGGAA)n repeat RNAs in spinocerebellar ataxia type 31 (SCA31). Structural analysis of the NCD-UGGAA/UGGAA complex by nuclear magnetic resonance (NMR) spectroscopy clarifies the mode of binding that recognizes four guanines in the UGGAA/UGGAA pentad by hydrogen bonding with four naphthyridine moieties of two NCD molecules. Biological studies show that NCD disrupts naturally occurring RNA foci built on r(UGGAA)n repeat RNA known as nuclear stress bodies (nSBs) by interfering with RNA-protein interactions resulting in the suppression of nSB-mediated splicing events. Feeding NCD to larvae of the Drosophila model of SCA31 alleviates the disease phenotype induced by toxic r(UGGAA)n repeat RNA. These studies demonstrate that small molecules targeting toxic repeat RNAs are a promising chemical tool for studies on repeat expansion diseases.


Assuntos
Drosophila/genética , RNA/genética , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Células HeLa , Humanos , Íntrons/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Fenótipo , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Temperatura
20.
BMC Neurol ; 20(1): 136, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293309

RESUMO

BACKGROUND: Spinocerebellar ataxia type 31 (SCA31) is not usually associated with dementia, and autopsy in a patient with both conditions is very rare. CASE PRESENTATION: An 87-year-old male patient presented with ataxia and progressive dementia. Genetic testing led to a diagnosis of SCA31. Fifteen years after his initial symptoms of hearing loss and difficulty walking, he died of aspiration pneumonia. A pathological analysis showed cerebellar degeneration consistent with SCA31 and abundant argyrophilic grains in the hippocampal formation and amygdala that could explain his dementia. CONCLUSIONS: This is the first autopsy report on comorbid argyrophilic grain disease with SCA31.


Assuntos
Demência/etiologia , Ataxias Espinocerebelares/diagnóstico , Idoso de 80 Anos ou mais , Tonsila do Cerebelo/patologia , Autopsia , Encéfalo/patologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...